Guía N° 1 NM4 QUÍMICA FENÓMENOS NUCLEARES Y SUS APLICACIONES

Alumno(a)...... Fecha:......

Plazo entrega 10 abril

Para igualar una ecuación nuclear, se igualan las cargas positivas (Z) a cada lado de la ecuación y se igualan las masas atómicas (A) a cada lado de la ecuación.

Se igualan con las radiaciones

Alfa
$$\alpha = \frac{4}{2}$$
He beta $\beta = \frac{0}{-1}\beta = \frac{0}{+1}$ e Positrón + $\beta = \frac{0}{+1}$ e neutrón = $\frac{1}{0}$ n

$$gamma = {0 \atop 0} \gamma$$

Por ejemplo
$${}^{15}_{7}N + {}^{1}_{1H} \longrightarrow {}^{4}_{2He} + \cdots$$

Se equilibra
$${}^{15}_{7}N + {}^{1}_{1}H \longrightarrow {}^{4}_{2}He + {}^{12}_{6}C$$

La suma de cargas positivas es 6 a ambos lados de la ecuación La suma de masas es 16 a ambos lados de la ecuación

ACTIVIDAD I

Completar las siguientes ecuaciones con el dato que falta

a)
$$^{90}_{52}$$
Te + ----- $^{90}_{53}$ I + 2 $^{1}_{0}$ n

b)
$$\stackrel{2}{\longrightarrow} \stackrel{60}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{7}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow}$$

c)
$${}^{55}_{25}\text{Mn} + {}^{1}_{0}\text{n} \longrightarrow \cdots + \gamma$$

d)
$$^{176}_{71}Lu \longrightarrow -----+ \beta$$

Colegio San Sebastián Santiago Centro Depto. Ciencias área Química Profesora Sra. Glenda Torres P.

e)
$$^{40}_{18}$$
Ar + $\alpha \longrightarrow ^{43}_{19}$ K + -----

f)
$$\underset{15}{\overset{30}{\text{P}}}$$
 $\xrightarrow{}$ $\underset{+1}{\overset{0}{\longrightarrow}}$ e + ------

g)
$$\xrightarrow{214}$$
 Pb $\xrightarrow{214}$ Bi $+ \cdots$

h)
$${}^{239}_{94}$$
Pu \longrightarrow ${}^{235}_{92}$ U + -----

i)
$${}^{27}_{13}AI + {}^{4}_{2}He \longrightarrow {}^{1}_{1}H + \cdots$$

$$j)$$
 $^{152}_{62}$ Sm \longrightarrow α $_{+}$

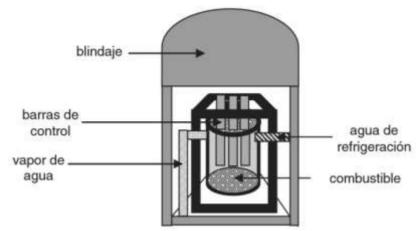
k)
$$^{210}_{84}$$
Po \longrightarrow α $_{+}$

I)
$${}^{250}_{98}Cf + {}^{11}_{5}B \longrightarrow {}^{257}_{103}Lw + \cdots$$

m)
$$^{238}_{92}$$
U $^{+}_{-----}$ \longrightarrow $^{239}_{92}$ U

n)
$$^{239}_{94}$$
Pu $^{+}_{+}$ $^{-----}_{96}$ Cm $^{+}_{0}$ n

o)
$$\longrightarrow_{32}^{59} Te + \beta^{-}$$


p)
$$\longrightarrow_{80}^{198}$$
Hg + $_{-1}^{0}\beta$

ACTIVIDAD II SELECCION MULTIPLE

- 1. La fusión es para la energía nuclear:
 - A) Un fenómeno de desintegración radioactiva.
 - B) La formación de átomos con núcleo más pesados.
 - C) La formación de átomos con núcleos livianos.
 - D) La emisión de partículas alfa.
 - E) La emisión de partículas beta.

Pregunta 21 Modelo Demre 2014

2. La siguiente figura:

Representa

- A) una pila voltaica.
- B) un reactor nuclear.
- C) una bomba atómica.
- D) una celda electroquímica.
- E) una torre de fraccionamiento.
- **3.** ¿Cuál de los siguientes núcleos pertenece a un elemento radioactivo que emita β-?
 - A) ²₁H
 - B) ¹⁴₇N
 - C) 75/As
 - D) 74/36Kr
 - E) 160 Hg
- **4.** Se tiene la siguiente ecuación ${}^{234}_{90}$ Th \longrightarrow ${}^{234}_{91}$ Pa + X + energía Donde X corresponde a:
 - A) α
 - B) β-
 - C) γ
 - D) ν≡
 - E) β +
- **5.** La siguiente ecuación corresponde a una reacción de:

$$^{235}_{92}$$
U + $^{1}_{0}$ n \longrightarrow $^{236}_{92}$ U \longrightarrow $^{139}_{56}$ Ba $^{94}_{36}$ Kr + 3 $^{1}_{0}$ n

- A) Neutralización
- B) Fusión nuclear
- C) Radiación ionizante
- D) Radioisótopos
- E) Transmutación nuclear

- **6.** El deuterio corresponde a un isótopo del átomo de hidrógeno. Se representa con la letra D hay uno cada 7.000 átomos de H y se utiliza en los procesos de fusión nuclear. ¿Cuál de las alternativas representa al deuterio?
 - A) ¹H

D) $\frac{2}{1}$ H

B) ¹₂H

E) ³H

- C) $\frac{1}{3}$ H
- 7. ¿Cuál de las siguientes afirmaciones no corresponde a las bombas nucleares?
 - A) La bomba de neutrones es una bomba táctica.
 - B) La bomba H se basa en la fusión.
 - C) La bomba atómica usa uranio como combustible.
 - D) Para que ocurra la fusión debe detonar una bomba atómica.
 - E) La bomba de neutrones es dañina por la temperatura alcanzada.
- 8. ¿Qué factor no se considera en la clasificación de desechos radiactivos?
 - A) estado físico
 - B) tipo de radiación
 - C) período de semi desintegración
 - **D)** actividad específica
 - E) tipo de aplicación
- **9.** El acrílico es la protección más adecuada para las radiaciones:

$$\alpha$$
I

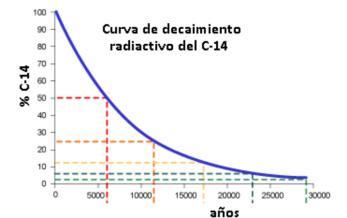
β II

 γ III

χ IV

- A) Solo I y II
- B) Solo II y III
- C) Solo III y IV
- D) Solo I, II, III
- E) I, II, III y IV
- **10.** Se tiene la siguiente ecuación: $X \longrightarrow {}^{234}_{90}\text{Th} + {}^{4}_{2}\text{He} + \text{energía}$ Donde X corresponde a:
 - A) 238 92
 - B) 238Th
 - C) 230 Ra
 - D) 235U
 - E) 234₉₂U

- 11. Las mujeres embarazadas no deben exponerse a rayos X debido a que:
 - Estos son radiaciones ionizantes.
 - II) Atraviesan el cuerpo y pueden dañar al feto.
 - III) Conducen la electricidad.
 - A) Solo I
 - Solo II B)
 - C) Solo III
 - D) Solo I y II
 - E) Solo II y III
- 12. De acuerdo a la siguiente ecuación $^{288}_{88}Ra$ $\,\longrightarrow$ X + β , al comparar los núcleos de Radio y el elemento X, podemos clasificarlos correctamente como:
 - A) isóbaros
 - B) isótopos
 - C) isótonos
 - D) isoelectrónicos
 - E) isómeros
- 13. El núcleo del elemento Thorio sufre una serie de desintegraciones radioactivas espontáneas hasta adquirir la configuración de $^{212}_{82}$ Pb . ¿A que corresponde X? $\xrightarrow{232}$ Th $\longrightarrow \ ^{212}_{82}$ Pb + X + 4 $^{1}_{0}$ n


$$\stackrel{232}{\longrightarrow}$$
Th $\stackrel{212}{\longrightarrow}$ $\stackrel{212}{\longrightarrow}$ Pb + X + 4 $\stackrel{1}{0}$ n

- A) $8 \beta^{+} + 8 \beta^{-}$
- B) 4 ⁴He
- C) 5α
- D) 8 β⁻
- E) Energía
- **14.** Completar la siguiente ecuación: ${}^{27}_{13}AI + {}^{1}_{0}n \longrightarrow X + {}^{4}_{2}He + {}^{0}_{-1}e$
 - ²²Ne A)
 - B) 34K
 - C) ²⁴/₁₂Mg
 - D)
 - ²⁴Na E)

Colegio San Sebastián Santiago Centro Depto. Ciencias área Química Profesora Sra. Glenda Torres P.

15. En el dibujo se muestra la desintegración radiactiva del carbono-14. ¿Cuál es la importancia del punto en el cual el C-14 se ha desintegrado durante 5.730 años?

- A) este punto se llama vida media.
- B) en este punto ya ha sucedido una desintegración total.
- en este punto ha ocurrido el ochenta por ciento de desintegración.
- D) este punto se llama cuarto de vida.
- E) es un punto importante para la datación radiométrica
- **16.** En un proceso radiactivo se liberan partículas Alfa, las cuales:
 - A) Son de bajo impacto.
 - B) Tienen un alto poder ionizante.
 - C) Son neutrones provenientes del núcleo.
 - D) Tienen dos electrones de valencia.
 - E) Traspasan fácilmente el cuerpo humano.
- 17. Los átomos con Z mayor a 83 se transmutan a
 - A) ²⁰⁶Bi
 - B) ²²⁶₈₈Ra
 - C) ²⁰⁶₈₂Pb
 - D) 235U
 - E) ¹⁴C
- **18.** En el tratamiento contra el cáncer se usa **Co 60** cuya vida media es 5,3 años. ¿Cuántos años deberán transcurrir para que la dosis llegue a 1/16?
 - A) 5,3
 - B) 10,6
 - C) 12
 - D) 16
 - E) 21,2

- 19. ¿Qué tipo de partículas liberan los átomos que tienen exceso de protones y gran masa?
 - A) ¹₀n
 - B) $\alpha + \beta$

 - C) γ D) $\frac{1}{0}$ n + β
 - ⁴He E)
- 20. ¿Cuál de los siguientes núcleos tiene más posibilidades de ser radiactivo?
 - A)
 - B) 39P
 - C) 30S
 - D) 32Cl
 - 37 18 E)
- 21. Un positrón se define como
 - A) $_{-1}^{0}$ e
 - B) $\frac{1}{0}$ n
 - C) $^{0}_{+1}$ e
 - D) quarks
 - energía E)
- 22. Un neutrón es
 - A) $\bar{e}_+ p^+$
 - B) $\frac{1}{0}$ n + β^+
 - C) ${}^{0}_{+1}e + {}^{0}_{-1}e$
 - D) $\beta^+ + \beta^-$
 - E) $\frac{1}{0}$ n + γ

Colegio San Sebastián Santiago Centro Depto. Ciencias área Química Profesora Sra. Glenda Torres P.

- 23. Respecto del C- 14 es verdadero que:
 - A) su periodo de desintegración de unos 5.730 años.
 - B) los vegetales lo asimilan directamente de la atmósfera.
 - C) los animales lo asimilan en la cadena alimenticia.
 - D) se usa en datación de restos fósiles.
 - E) todas son correctas.
- 24. De las alternativas, señala la energía considerada: "no renovable"
 - A) La biomasa.
 - B) La hidráulica.
 - C) La solar.
 - D) La nuclear.
 - E) La geotérmica.
- **25.** ¿Cuál será el producto de la desintegración del $\frac{187}{75}$ Re, al emitir una partícula beta (β)?
 - A) ¹⁸⁸₃₈Re
 - B) ¹⁸⁷₇₆Os
 - C) ¹⁸⁹ Os
 - D) 186 Re
 - E) 187₇₄W
- 26. Un elemento es radiactivo si:
 - A) su núcleo es inestable.
 - B) su masa es grande.
 - C) tiene muchos electrones.
 - D) tiene igual cantidad de protones y neutrones.
 - E) no tiene neutrones.

